материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (
Чугуны и стали (См.
Сталь))
, меди (бронзы (См.
Бронза) и латуни (См.
Латунь))
, свинца и олова.
При конструировании самолётов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов (См.
Жаропрочные сплавы) на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию - малому поперечному сечению захвата нейтронов.
К. м. подразделяются: по природе материалов - на металлические, неметаллические и
Композиционные материалы, сочетающие положительные свойства тех и др. материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на
материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.
Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов - алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения - закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу - стали аустенитные и ферритные, латуни и т.д.
Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные
материалы и, наоборот, в ряде случаев строительные
материалы, например
Железобетон, применяются в конструкциях машиностроения.
Технико-экономические параметры К. м. включают: технологические параметры - обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).
К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали (См.
Инструментальная сталь)
, для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём К. м., используемых техникой. Они отличаются широким диапазоном прочности - от 200 до 3000
Мн/м2 (20-300
кгс/мм2)
, пластичность сталей достигает
80\%, вязкость - 3
МДж/м2. Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях - улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.
Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м2 (чугаль) до 1350 Мн/м2 (легированный магниевый чугун).
Никелевые сплавы и
Кобальтовые сплавы сохраняют прочность до 1000-1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах (См.
Электроннолучевая печь)
. Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов (См.
Алюминиевые сплавы)
составляет: деформируемых до 750
Мн/м2, литейных до 550
Мн/м2, по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др.
Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400
Мн/м2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др.
Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600
Мн/м2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.
Неметаллические К. м. включают пластики, термопластичные полимерные
материалы (см.
Полимеры)
, керамику (См.
Керамика)
, Огнеупоры, стекла (См.
Стекло)
, резины (См.
Резина)
, древесину (См.
Древесина)
. Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов (См.
Фторопласты)
, армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные
материалы -
Полистирол, полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.
Стекла (силикатные, кварцевые, органические),
Триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.
Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком (См.
Стеклопластики) позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.
Т. к. в составе К. м. нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50-100\% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20-50\%.
Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества К. м. является регламентация структуры традиционных К. м. Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.
При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.
Лит.: Киселев Б. А., Стеклопластики, М., 1961; Конструкционные материалы, т. 1- 3, М., 1963-65; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Конструкционные свойства пластмасс, пер. с англ., М., 1967; Резина - конструкционный материал современного машиностроения. Сб. ст., М., 1967; Материалы в машиностроении. Выбор и применение. Справочник, под ред. И. В. Кудрявцева, т. 1-5, М., 1967-69; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Современные композиционные материалы, пер. с англ., М., 1970; Алюминиевые сплавы. Сб. ст., т. 1-6, М., 1963-69.
А. Т. Туманов, Н. С. Скляров.